Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Clin Invest ; 134(8)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38618952

RESUMO

N6-Methyladenosine (m6A) is the most abundant posttranscriptional modification, and its contribution to cancer evolution has recently been appreciated. Renal cancer is the most common adult genitourinary cancer, approximately 85% of which is accounted for by the clear cell renal cell carcinoma (ccRCC) subtype characterized by VHL loss. However, it is unclear whether VHL loss in ccRCC affects m6A patterns. In this study, we demonstrate that VHL binds and promotes METTL3/METTL14 complex formation while VHL depletion suppresses m6A modification, which is distinctive from its canonical E3 ligase role. m6A RNA immunoprecipitation sequencing (RIP-Seq) coupled with RNA-Seq allows us to identify a selection of genes whose expression may be regulated by VHL-m6A signaling. Specifically, PIK3R3 is identified to be a critical gene whose mRNA stability is regulated by VHL in a m6A-dependent but HIF-independent manner. Functionally, PIK3R3 depletion promotes renal cancer cell growth and orthotopic tumor growth while its overexpression leads to decreased tumorigenesis. Mechanistically, the VHL-m6A-regulated PIK3R3 suppresses tumor growth by restraining PI3K/AKT activity. Taken together, we propose a mechanism by which VHL regulates m6A through modulation of METTL3/METTL14 complex formation, thereby promoting PIK3R3 mRNA stability and protein levels that are critical for regulating ccRCC tumorigenesis.


Assuntos
Adenina , Carcinoma de Células Renais , Neoplasias Renais , Adulto , Humanos , Carcinogênese/genética , Carcinoma de Células Renais/genética , Transformação Celular Neoplásica , Expressão Gênica , Neoplasias Renais/genética , Metiltransferases/genética , Fosfatidilinositol 3-Quinases/genética
2.
bioRxiv ; 2023 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-37745402

RESUMO

pre-mRNA splicing is a critical feature of eukaryotic gene expression. Many eukaryotes use cis-splicing to remove intronic sequences from pre-mRNAs. In addition to cis-splicing, many organisms use trans-splicing to replace the 5' ends of mRNAs with a non-coding spliced-leader RNA. Both cis- and trans-splicing rely on accurately recognising splice site sequences by spliceosomal U snRNAs and associated proteins. Spliceosomal snRNAs carry multiple RNA modifications with the potential to affect different stages of pre-mRNA splicing. Here, we show that m6A modification of U6 snRNA A43 by the RNA methyltransferase METT-10 is required for accurate and efficient cis- and trans-splicing of C. elegans pre-mRNAs. The absence of U6 snRNA m6A modification primarily leads to alternative splicing at 5' splice sites. Furthermore, weaker 5' splice site recognition by the unmodified U6 snRNA A43 affects splicing at 3' splice sites. U6 snRNA m6A43 and the splicing factor SNRNP27K function to recognise an overlapping set of 5' splice sites with an adenosine at +4 position. Finally, we show that U6 snRNA m6A43 is required for efficient SL trans-splicing at weak 3' trans-splice sites. We conclude that the U6 snRNA m6A modification is important for accurate and efficient cis- and trans-splicing in C. elegans.

3.
bioRxiv ; 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36993753

RESUMO

Chemical modification of RNAs is important for post-transcriptional gene regulation. The METTL3-METTL14 complex generates most N 6 -methyladenosine (m 6 A) modifications in mRNAs, and dysregulated methyltransferase expression has been linked to numerous cancers. Here we show that changes in m 6 A modification location can impact oncogenesis. A gain-of-function missense mutation found in cancer patients, METTL14 R298P , promotes malignant cell growth in culture and in transgenic mice. The mutant methyltransferase preferentially modifies noncanonical sites containing a GGAU motif and transforms gene expression without increasing global m 6 A levels in mRNAs. The altered substrate specificity is intrinsic to METTL3-METTL14, helping us to propose a structural model for how the METTL3-METTL14 complex selects the cognate RNA sequences for modification. Together, our work highlights that sequence-specific m 6 A deposition is important for proper function of the modification and that noncanonical methylation events can impact aberrant gene expression and oncogenesis.

4.
Nature ; 613(7943): 383-390, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36599982

RESUMO

Specific, regulated modification of RNAs is important for proper gene expression1,2. tRNAs are rich with various chemical modifications that affect their stability and function3,4. 7-Methylguanosine (m7G) at tRNA position 46 is a conserved modification that modulates steady-state tRNA levels to affect cell growth5,6. The METTL1-WDR4 complex generates m7G46 in humans, and dysregulation of METTL1-WDR4 has been linked to brain malformation and multiple cancers7-22. Here we show how METTL1 and WDR4 cooperate to recognize RNA substrates and catalyse methylation. A crystal structure of METTL1-WDR4 and cryo-electron microscopy structures of METTL1-WDR4-tRNA show that the composite protein surface recognizes the tRNA elbow through shape complementarity. The cryo-electron microscopy structures of METTL1-WDR4-tRNA with S-adenosylmethionine or S-adenosylhomocysteine along with METTL1 crystal structures provide additional insights into the catalytic mechanism by revealing the active site in multiple states. The METTL1 N terminus couples cofactor binding with conformational changes in the tRNA, the catalytic loop and the WDR4 C terminus, acting as the switch to activate m7G methylation. Thus, our structural models explain how post-translational modifications of the METTL1 N terminus can regulate methylation. Together, our work elucidates the core and regulatory mechanisms underlying m7G modification by METTL1, providing the framework to understand its contribution to biology and disease.


Assuntos
Microscopia Crioeletrônica , Proteínas de Ligação ao GTP , Metilação , Metiltransferases , Processamento Pós-Transcricional do RNA , RNA de Transferência , Humanos , Domínio Catalítico , Cristalografia por Raios X , Proteínas de Ligação ao GTP/química , Proteínas de Ligação ao GTP/metabolismo , Proteínas de Ligação ao GTP/ultraestrutura , Metiltransferases/química , Metiltransferases/metabolismo , Metiltransferases/ultraestrutura , RNA de Transferência/química , RNA de Transferência/metabolismo , RNA de Transferência/ultraestrutura , S-Adenosil-Homocisteína/metabolismo , S-Adenosilmetionina/metabolismo , Especificidade por Substrato , Biocatálise
5.
Nat Cell Biol ; 24(2): 205-216, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35145225

RESUMO

METTL16 has recently been identified as an RNA methyltransferase responsible for the deposition of N6-methyladenosine (m6A) in a few transcripts. Whether METTL16 methylates a large set of transcripts, similar to METTL3 and METTL14, remains unclear. Here we show that METTL16 exerts both methyltransferase activity-dependent and -independent functions in gene regulation. In the cell nucleus, METTL16 functions as an m6A writer to deposit m6A into hundreds of its specific messenger RNA targets. In the cytosol, METTL16 promotes translation in an m6A-independent manner. More specifically, METTL16 directly interacts with the eukaryotic initiation factors 3a and -b as well as ribosomal RNA through its Mtase domain, thereby facilitating the assembly of the translation-initiation complex and promoting the translation of over 4,000 mRNA transcripts. Moreover, we demonstrate that METTL16 is critical for the tumorigenesis of hepatocellular carcinoma. Collectively, our studies reveal previously unappreciated dual functions of METTL16 as an m6A writer and a translation-initiation facilitator, which together contribute to its essential function in tumorigenesis.


Assuntos
Adenosina/análogos & derivados , Carcinogênese/metabolismo , Carcinoma Hepatocelular/enzimologia , Neoplasias Hepáticas/enzimologia , Metiltransferases/metabolismo , Biossíntese de Proteínas , Processamento Pós-Transcricional do RNA , RNA Mensageiro/metabolismo , Adenosina/metabolismo , Animais , Carcinogênese/genética , Carcinogênese/patologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Citosol/enzimologia , Fator de Iniciação 3 em Eucariotos/genética , Fator de Iniciação 3 em Eucariotos/metabolismo , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Células Hep G2 , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Metiltransferases/genética , Camundongos Endogâmicos NOD , Camundongos SCID , RNA Mensageiro/genética , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , Transdução de Sinais , Carga Tumoral
6.
Cell Rep ; 29(12): 4024-4035.e5, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31851931

RESUMO

DDX17, a DEAD-box ATPase, is a multifunctional helicase important for various RNA functions, including microRNA maturation. Key questions for DDX17 include how it recognizes target RNAs and influences their structures, as well as how its ATPase activity may be regulated. Through crystal structures and biochemical assays, we show the ability of the core catalytic domains of DDX17 to recognize specific sequences in target RNAs. The RNA sequence preference of the catalytic core is critical for DDX17 to directly bind and remodel a specific region of primary microRNAs 3' to the mature sequence, and consequently enhance processing by Drosha. Furthermore, we identify an intramolecular interaction between the N-terminal tail and the DEAD domain of DDX17 to have an autoregulatory role in controlling the ATPase activity. Thus, we provide the molecular basis for how cognate RNA recognition and functional outcomes are linked for DDX17.


Assuntos
Adenosina Trifosfatases/metabolismo , RNA Helicases DEAD-box/química , RNA Helicases DEAD-box/metabolismo , MicroRNAs/química , MicroRNAs/metabolismo , Processamento Pós-Transcricional do RNA , Cristalografia por Raios X , RNA Helicases DEAD-box/genética , Células HEK293 , Homeostase , Humanos , MicroRNAs/genética , Conformação Proteica
7.
Mol Cell ; 71(6): 1001-1011.e4, 2018 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-30197297

RESUMO

S-adenosylmethionine (SAM) is an essential metabolite that acts as a cofactor for most methylation events in the cell. The N6-methyladenosine (m6A) methyltransferase METTL16 controls SAM homeostasis by regulating the abundance of SAM synthetase MAT2A mRNA in response to changing intracellular SAM levels. Here we present crystal structures of METTL16 in complex with MAT2A RNA hairpins to uncover critical molecular mechanisms underlying the regulated activity of METTL16. The METTL16-RNA complex structures reveal atomic details of RNA substrates that drive productive methylation by METTL16. In addition, we identify a polypeptide loop in METTL16 near the SAM binding site with an autoregulatory role. We show that mutations that enhance or repress METTL16 activity in vitro correlate with changes in MAT2A mRNA levels in cells. Thus, we demonstrate the structural basis for the specific activity of METTL16 and further suggest the molecular mechanisms by which METTL16 efficiency is tuned to regulate SAM homeostasis.


Assuntos
Metiltransferases/metabolismo , Metiltransferases/ultraestrutura , Regiões 3' não Traduzidas , Adenosina/análogos & derivados , Sítios de Ligação , Células HEK293 , Homeostase , Humanos , Metionina Adenosiltransferase/metabolismo , Metilação , Metiltransferases/fisiologia , RNA , RNA Mensageiro , RNA Nuclear Pequeno/metabolismo , S-Adenosilmetionina/metabolismo
8.
Cell Rep ; 23(10): 3091-3101, 2018 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-29874593

RESUMO

LIN28 is an RNA-binding protein that regulates the maturation of the let-7 family of microRNAs by bipartite interactions with let-7 precursors through its two distinct cold shock and zinc-knuckle domains. Through inhibition of let-7 biogenesis, LIN28 functions as a pluripotency factor, as well as a driver of tumorigenesis. Here, we report a fluorescence polarization assay to identify small-molecule inhibitors for both domains of LIN28 involved in let-7 interactions. Of 101,017 compounds screened, six inhibit LIN28:let-7 binding and impair LIN28-mediated let-7 oligouridylation. Upon further characterization, we demonstrate that the LIN28 inhibitor TPEN destabilizes the zinc-knuckle domain of LIN28, while LI71 binds the cold shock domain to suppress LIN28's activity against let-7 in leukemia cells and embryonic stem cells. Our results demonstrate selective pharmacologic inhibition of individual domains of LIN28 and provide a foundation for therapeutic inhibition of the let-7 biogenesis pathway in LIN28-driven diseases.


Assuntos
MicroRNAs/metabolismo , Processamento Pós-Transcricional do RNA , Proteínas de Ligação a RNA/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Uridina/metabolismo , Sítios de Ligação , Linhagem Celular Tumoral , Células-Tronco Embrionárias/efeitos dos fármacos , Células-Tronco Embrionárias/metabolismo , Polarização de Fluorescência , Ensaios de Triagem em Larga Escala , Humanos , MicroRNAs/genética , Modelos Moleculares , Niacina/química , Bibliotecas de Moléculas Pequenas/química
9.
Cell Rep ; 18(11): 2664-2675, 2017 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-28297670

RESUMO

LIN28 is an RNA binding protein that plays crucial roles in pluripotency, glucose metabolism, tissue regeneration, and tumorigenesis. LIN28 binds to the let-7 primary and precursor microRNAs through bipartite recognition and induces degradation of let-7 precursors (pre-let-7) by promoting oligouridylation by terminal uridylyltransferases (TUTases). Here, we report that the zinc knuckle domain (ZKD) of mouse LIN28 recruits TUT4 to initiate the oligouridylation of let-7 precursors. Our crystal structure of human LIN28 in complex with a fragment of pre-let-7f-1 determined to 2.0 Å resolution shows that the interaction between ZKD and RNA is constrained to a small cavity with a high druggability score. We demonstrate that the specific interaction between ZKD and pre-let-7 is necessary and sufficient to induce oligouridylation by recruiting the N-terminal fragment of TUT4 (NTUT4) and the formation of a stable ZKD:NTUT4:pre-let-7 ternary complex is crucial for the acquired processivity of TUT4.


Assuntos
MicroRNAs/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Uridina/metabolismo , Animais , Sequência de Bases , Regulação da Expressão Gênica , Humanos , Cinética , Camundongos , Modelos Moleculares , Conformação de Ácido Nucleico , Ligação Proteica , Domínios Proteicos , Proteínas Recombinantes/metabolismo , Ribonuclease III/metabolismo , Relação Estrutura-Atividade , Ressonância de Plasmônio de Superfície
10.
Mol Cell ; 63(2): 306-317, 2016 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-27373337

RESUMO

N(6)-methyladenosine (m(6)A) is a prevalent, reversible chemical modification of functional RNAs and is important for central events in biology. The core m(6)A writers are Mettl3 and Mettl14, which both contain methyltransferase domains. How Mettl3 and Mettl14 cooperate to catalyze methylation of adenosines has remained elusive. We present crystal structures of the complex of Mettl3/Mettl14 methyltransferase domains in apo form as well as with bound S-adenosylmethionine (SAM) or S-adenosylhomocysteine (SAH) in the catalytic site. We determine that the heterodimeric complex of methyltransferase domains, combined with CCCH motifs, constitutes the minimally required regions for creating m(6)A modifications in vitro. We also show that Mettl3 is the catalytically active subunit, while Mettl14 plays a structural role critical for substrate recognition. Our model provides a molecular explanation for why certain mutations of Mettl3 and Mettl14 lead to impaired function of the methyltransferase complex.


Assuntos
Metiltransferases/metabolismo , RNA/metabolismo , Adenosina/análogos & derivados , Adenosina/metabolismo , Regulação Alostérica , Sítios de Ligação , Domínio Catalítico , Células HEK293 , Humanos , Metilação , Metiltransferases/química , Metiltransferases/genética , Modelos Moleculares , Mutação , Ligação Proteica , Conformação Proteica , RNA/química , RNA/genética , S-Adenosil-Homocisteína/metabolismo , S-Adenosilmetionina/metabolismo , Relação Estrutura-Atividade
11.
PLoS One ; 6(10): e25645, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22022427

RESUMO

BACKGROUND: The functional interchangeability of mammalian Notch receptors (Notch1-4) in normal and pathophysiologic contexts such as cancer is unsettled. We used complementary in vivo, cell-based and structural analyses to compare the abilities of activated Notch1-4 to support T cell development, induce T cell acute lymphoblastic leukemia/lymphoma (T-ALL), and maintain T-ALL cell growth and survival. PRINCIPAL FINDINGS: We find that the activated intracellular domains of Notch1-4 (ICN1-4) all support T cell development in mice and thymic organ culture. However, unlike ICN1-3, ICN4 fails to induce T-cell acute lymphoblastic leukemia/lymphoma (T-ALL) and is unable to rescue the growth of Notch1-dependent T-ALL cell lines. The ICN4 phenotype is mimicked by weak gain-of-function forms of Notch1, suggesting that it stems from a failure to transactivate one or more critical target genes above a necessary threshold. Experiments with chimeric receptors demonstrate that the Notch ankyrin repeat domains differ in their leukemogenic potential, and that this difference correlates with activation of Myc, a direct Notch target that has an important role in Notch-associated T-ALL. CONCLUSIONS/SIGNIFICANCE: We conclude that the leukemogenic potentials of Notch receptors vary, and that this functional difference stems in part from divergence among the highly conserved ankyrin repeats, which influence the transactivation of specific target genes involved in leukemogenesis.


Assuntos
Repetição de Anquirina , Transformação Celular Neoplásica/patologia , Variação Genética , Proteínas Proto-Oncogênicas c-myc/genética , Receptores Notch/química , Receptores Notch/metabolismo , Ativação Transcricional/genética , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Fenômenos Biofísicos/efeitos dos fármacos , Transplante de Medula Óssea , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Transformação Celular Neoplásica/efeitos dos fármacos , Variação Genética/efeitos dos fármacos , Humanos , Camundongos , Técnicas de Cultura de Órgãos , Peptídeos/química , Peptídeos/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Inibidores de Proteases/farmacologia , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Relação Estrutura-Atividade , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo , Linfócitos T/patologia , Timócitos/efeitos dos fármacos , Timócitos/metabolismo , Timócitos/patologia , Ativação Transcricional/efeitos dos fármacos , Transdução Genética
12.
Nature ; 469(7331): 564-7, 2011 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-21240259

RESUMO

The essential mammalian enzyme O-linked ß-N-acetylglucosamine transferase (O-GlcNAc transferase, here OGT) couples metabolic status to the regulation of a wide variety of cellular signalling pathways by acting as a nutrient sensor. OGT catalyses the transfer of N-acetylglucosamine from UDP-N-acetylglucosamine (UDP-GlcNAc) to serines and threonines of cytoplasmic, nuclear and mitochondrial proteins, including numerous transcription factors, tumour suppressors, kinases, phosphatases and histone-modifying proteins. Aberrant glycosylation by OGT has been linked to insulin resistance, diabetic complications, cancer and neurodegenerative diseases including Alzheimer's. Despite the importance of OGT, the details of how it recognizes and glycosylates its protein substrates are largely unknown. We report here two crystal structures of human OGT, as a binary complex with UDP (2.8 Å resolution) and as a ternary complex with UDP and a peptide substrate (1.95 Å). The structures provide clues to the enzyme mechanism, show how OGT recognizes target peptide sequences, and reveal the fold of the unique domain between the two halves of the catalytic region. This information will accelerate the rational design of biological experiments to investigate OGT's functions; it will also help the design of inhibitors for use as cellular probes and help to assess its potential as a therapeutic target.


Assuntos
Modelos Moleculares , N-Acetilglucosaminiltransferases/química , Domínio Catalítico , Humanos , N-Acetilglucosaminiltransferases/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Estrutura Terciária de Proteína , Difosfato de Uridina/metabolismo
13.
Nature ; 455(7215): 936-43, 2008 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-18923516

RESUMO

Most proteins are secreted from bacteria by the interaction of the cytoplasmic SecA ATPase with a membrane channel, formed by the heterotrimeric SecY complex. Here we report the crystal structure of SecA bound to the SecY complex, with a maximum resolution of 4.5 ångström (A), obtained for components from Thermotoga maritima. One copy of SecA in an intermediate state of ATP hydrolysis is bound to one molecule of the SecY complex. Both partners undergo important conformational changes on interaction. The polypeptide-cross-linking domain of SecA makes a large conformational change that could capture the translocation substrate in a 'clamp'. Polypeptide movement through the SecY channel could be achieved by the motion of a 'two-helix finger' of SecA inside the cytoplasmic funnel of SecY, and by the coordinated tightening and widening of SecA's clamp above the SecY pore. SecA binding generates a 'window' at the lateral gate of the SecY channel and it displaces the plug domain, preparing the channel for signal sequence binding and channel opening.


Assuntos
Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Thermotoga maritima/química , Trifosfato de Adenosina/metabolismo , Bacillus subtilis/química , Cristalografia por Raios X , Hidrólise , Modelos Biológicos , Modelos Moleculares , Movimento , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Ligação Proteica , Conformação Proteica , Sinais Direcionadores de Proteínas/fisiologia , Transporte Proteico , Canais de Translocação SEC , Proteínas SecA , Relação Estrutura-Atividade
14.
Nature ; 455(7215): 984-7, 2008 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-18923526

RESUMO

An important step in the biosynthesis of many proteins is their partial or complete translocation across the plasma membrane in prokaryotes or the endoplasmic reticulum membrane in eukaryotes. In bacteria, secretory proteins are generally translocated after completion of their synthesis by the interaction of the cytoplasmic ATPase SecA and a protein-conducting channel formed by the SecY complex. How SecA moves substrates through the SecY channel is unclear. However, a recent structure of a SecA-SecY complex raises the possibility that the polypeptide chain is moved by a two-helix finger domain of SecA that is inserted into the cytoplasmic opening of the SecY channel. Here we have used disulphide-bridge crosslinking to show that the loop at the tip of the two-helix finger of Escherichia coli SecA interacts with a polypeptide chain right at the entrance into the SecY pore. Mutagenesis demonstrates that a tyrosine in the loop is particularly important for translocation, but can be replaced by some other bulky, hydrophobic residues. We propose that the two-helix finger of SecA moves a polypeptide chain into the SecY channel with the tyrosine providing the major contact with the substrate, a mechanism analogous to that suggested for hexameric, protein-translocating ATPases.


Assuntos
Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Escherichia coli/enzimologia , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Adenosina Trifosfatases/genética , Motivos de Aminoácidos , Proteínas de Bactérias/genética , Reagentes de Ligações Cruzadas , Dissulfetos/química , Dissulfetos/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana Transportadoras/genética , Modelos Biológicos , Modelos Moleculares , Conformação Proteica , Transporte Proteico , Canais de Translocação SEC , Proteínas SecA , Relação Estrutura-Atividade , Tirosina/metabolismo
15.
Proc Natl Acad Sci U S A ; 104(7): 2103-8, 2007 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-17284587

RESUMO

Notch receptors control differentiation and contribute to pathologic states such as cancer by interacting directly with a transcription factor called CSL (for CBF-1/Suppressor of Hairless/Lag-1) to induce expression of target genes. A number of Notch-regulated targets, including genes of the hairy/enhancer-of-split family in organisms ranging from Drosophila to humans, are characterized by paired CSL-binding sites in a characteristic head-to-head arrangement. Using a combination of structural and molecular approaches, we establish here that cooperative formation of dimeric Notch transcription complexes on promoters with paired sites is required to activate transcription. Our findings identify a mechanistic step that can account for the exquisite sensitivity of Notch target genes to variation in signal strength and developmental context, enable new strategies for sensitive and reliable identification of Notch target genes, and lay the groundwork for the development of Notch pathway inhibitors that are active on target genes containing paired sites.


Assuntos
Receptores Notch/metabolismo , Transcrição Gênica , Anquirinas/metabolismo , Sítios de Ligação , Dimerização , Regulação da Expressão Gênica , Humanos , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/metabolismo , Complexos Multiproteicos/fisiologia , Regiões Promotoras Genéticas , Receptores Notch/química , Receptores Notch/fisiologia , Ativação Transcricional
16.
Mol Cell Biol ; 26(16): 6261-71, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16880534

RESUMO

NOTCH1 is a large type I transmembrane receptor that regulates normal T-cell development via a signaling pathway that relies on regulated proteolysis. Ligand binding induces proteolytic cleavages in NOTCH1 that release its intracellular domain (ICN1), which translocates to the nucleus and activates target genes by forming a short-lived nuclear complex with two other proteins, the DNA-binding factor CSL and a Mastermind-like (MAML) coactivator. Recent work has shown that human T-ALL is frequently associated with C-terminal NOTCH1 truncations, which uniformly remove sequences lying between residues 2524 and 2556. This region includes the highly conserved sequence WSSSSP (S4), which based on its amino acid content appeared to be a likely site for regulatory serine phosphorylation events. We show here that the mutation of the S4 sequence leads to hypophosphorylation of ICN1; increased NOTCH1 signaling; and the stabilization of complexes containing ICN1, CSL, and MAML1. Consistent with these in vitro studies, mutation of the WSSSSP sequence converts nonleukemogenic weak gain-of-function NOTCH1 alleles into alleles that cause aggressive T-ALLs in a murine bone marrow transplant model. These studies indicate that S4 is an important negative regulatory sequence and that the deletion of S4 likely contributes to the development of human T-ALL.


Assuntos
Sequência Conservada/genética , Regulação para Baixo/genética , Neoplasias/patologia , Receptor Notch1/metabolismo , Sequências Reguladoras de Ácido Nucleico/genética , Sequência de Aminoácidos , Animais , Células Cultivadas , Quinase 8 Dependente de Ciclina , Quinases Ciclina-Dependentes/metabolismo , Humanos , Leucemia-Linfoma de Células T do Adulto/patologia , Camundongos , Dados de Sequência Molecular , Mutação/genética , Células NIH 3T3 , Peptídeos/química , Fosforilação , Estrutura Terciária de Proteína , Provírus/genética , Receptor Notch1/química , Termodinâmica
17.
Cell ; 124(5): 973-83, 2006 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-16530044

RESUMO

Notch receptors transduce essential developmental signals between neighboring cells by forming a complex that leads to transcription of target genes upon activation. We report here the crystal structure of a Notch transcriptional activation complex containing the ankyrin domain of human Notch1 (ANK), the transcription factor CSL on cognate DNA, and a polypeptide from the coactivator Mastermind-like-1 (MAML-1). Together, CSL and ANK create a groove to bind the MAML-1 polypeptide as a kinked, 70 A helix. The composite binding surface likely restricts the recruitment of MAML proteins to promoters on which Notch:CSL complexes have been preassembled, ensuring tight transcriptional control of Notch target genes.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/metabolismo , Proteínas Nucleares/metabolismo , Estrutura Quaternária de Proteína , Receptor Notch1/química , Receptor Notch1/metabolismo , Transcrição Gênica , Ativação Transcricional , Sequência de Aminoácidos , Animais , Cristalografia por Raios X , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica , Humanos , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/genética , Substâncias Macromoleculares , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Nucleares/genética , Conformação de Ácido Nucleico , Regiões Promotoras Genéticas , Receptor Notch1/genética , Alinhamento de Sequência , Transativadores , Fatores de Transcrição
18.
J Biol Chem ; 278(23): 21232-9, 2003 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-12644465

RESUMO

Ligand binding by Notch receptors triggers a series of proteolytic cleavages that liberate the intracellular portion of Notch (ICN) from the cell membrane, permitting it to translocate to the nucleus. Nuclear ICN binds to a highly conserved DNA-binding transcription factor called CSL (also known as RBP-Jkappa, CBF1, Suppressor of Hairless, and Lag-1) and recruits Mastermind-like transcriptional co-activators to form a transcriptional activation complex. Using bioinformatics tools, we identified a Rel homology region (RHR) within CSL that was used as a guide to determine the minimal protein requirements for ternary complex formation. The RHR of CSL contains both the N- and C-terminal beta-sheet domains (RHR-n and RHR-c) of typical Rel transcription factors, as judged by circular dichroism spectra. Binding of monomeric CSL to DNA requires the entire RHR of CSL and an additional 125-residue N-terminal sequence, whereas binding to ICN requires only the RHR-n domain. Although the RAM (RBP-Jkappa (recombination-signal-sequence-binding protein for Jkappa genes)-associated molecule) domain of ICN is flexible and relatively unstructured as an isolated polypeptide in solution, it associates stably with CSL on DNA. Recruitment of Mastermind-like 1 (MAML1) to CSL.ICN complexes on DNA requires inclusion of the ankyrin repeat domain of ICN, and N- and C-terminal sequences of CSL extending beyond the DNA-binding region. The requirement for cooperative assembly of the MAML1.ICN.CSL.DNA complex suggests that a primary function of ICN is to render CSL competent for MAML loading. On the basis of our results, we present a working structural model for the organization of the MAML1.ICN.CSL.DNA complex.


Assuntos
Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Receptores de Superfície Celular , Fatores de Transcrição , Ativação Transcricional/fisiologia , Anquirinas/química , Anquirinas/genética , Anquirinas/metabolismo , Fenômenos Biofísicos , Biofísica , DNA/metabolismo , Proteínas de Ligação a DNA/genética , Humanos , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina , Dados de Sequência Molecular , Proteínas Nucleares/genética , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas c-rel/genética , Receptor Notch1 , Homologia de Sequência de Aminoácidos , Relação Estrutura-Atividade , Transativadores
19.
Mol Cell Biol ; 23(2): 655-64, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12509463

RESUMO

Constitutive NOTCH signaling in lymphoid progenitors promotes the development of immature T-cell lymphoblastic neoplasms (T-ALLs). Although it is clear that Notch signaling can initiate leukemogenesis, it has not previously been established whether continued NOTCH signaling is required to maintain T-ALL growth. We demonstrate here that the blockade of Notch signaling at two independent steps suppresses the growth and survival of NOTCH1-transformed T-ALL cells. First, inhibitors of presenilin specifically induce growth suppression and apoptosis of a murine T-ALL cell line that requires presenilin-dependent proteolysis of the Notch receptor in order for its intracellular domain to translocate to the nucleus. Second, a 62-amino-acid peptide derived from a NOTCH coactivator, Mastermind-like-1 (MAML1), forms a transcriptionally inert nuclear complex with NOTCH1 and CSL and specifically inhibits the growth of both murine and human NOTCH1-transformed T-ALLs. These studies show that continued growth and survival of NOTCH1-transformed lymphoid cell lines require nuclear access and transcriptional coactivator recruitment by NOTCH1 and identify at least two steps in the Notch signaling pathway as potential targets for chemotherapeutic intervention.


Assuntos
Proteínas de Membrana/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Receptores de Superfície Celular , Transdução de Sinais , Linfócitos T/citologia , Fatores de Transcrição , Alelos , Animais , Apoptose , Northern Blotting , Western Blotting , Ciclo Celular , Divisão Celular , Linhagem Celular , Linhagem Celular Transformada , Mapeamento Cromossômico , Proteínas de Ligação a DNA/metabolismo , Relação Dose-Resposta a Droga , Regulação para Baixo , Genes Dominantes , Genes Reporter , Proteínas de Fluorescência Verde , Humanos , Proteínas Luminescentes/metabolismo , Proteínas de Membrana/antagonistas & inibidores , Camundongos , Modelos Biológicos , Proteínas Nucleares/metabolismo , Peptídeos/química , Plasmídeos/metabolismo , Testes de Precipitina , Presenilina-1 , Ligação Proteica , Estrutura Terciária de Proteína , Receptor Notch1 , Receptores Notch , Proteínas Recombinantes de Fusão/metabolismo , Retroviridae/genética , Fatores de Tempo , Transativadores , Transdução Genética
20.
Curr Opin Chem Biol ; 6(4): 501-9, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12133727

RESUMO

Signals transduced by Notch receptors influence differentiation and proliferation in a wide variety of cell types. Activation of a Notch signal by one of several ligands triggers a series of proteolytic cleavages that release the intracellular region of Notch from the membrane, allowing it ultimately to translocate to the nucleus and activate the transcription of downstream target genes. Recent studies have elucidated the roles of several key proteins that participate in and modulate these central events in Notch signal transduction. These advances offer a variety of potential avenues to manipulate Notch signaling for therapeutic purposes in the treatment of cancer and in stem cell maintenance.


Assuntos
Sistemas de Liberação de Medicamentos , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Humanos , Ligantes , Receptores Notch , Transdução de Sinais/efeitos dos fármacos , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA